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1.0 INTRODUCTION

ADS is a general purpose numerical optimization program containing a wide

variz=iye of alyovrithms. The problem solved is:

Gi(X) .LE. © j=1,m
Hk(X) LEQ. O k=1,L
XL, .LE. X. .LE. XU, i=1l,n
i i i
The solution of this general problem is separated into thrcc baric lev.ls:

EGY - For example, Sequential Unconstrained Minimization or Seguential
r Programming. The purpose of a strategy is to convert tne ariginal
rained problem into a sequence of approximate problems using various
chniques. A strategy is not used for unconstrained probiems. In that
ase, the parameter, ISTRAT, is set to zero.

2. OPTIMIZER - For example, Variable Metric methods for unconstrained
minimization or the Method of Feasible Directions for constrained
minimization. The optimizer performs the actual function minimization of
either the original problem (if ISTRAT=0) or the approximate problem (if
ISTRAT is greater than zero).

3. ONE-DIMENSIONAL SEARCH - For example, Golden Section or Polynomial
Interpolation. The one-dimensional search is called by the optimizer and,

in some cases, the strategy. By choosing . Strategy, Optimizer and One-
Dimensional Search, the user is given consi-ezr-ble flexibility in creating
an optimization program which works vell fc given class of design
problems.

Additionally, we may consider another component to be problem formulation.
It is assumed that the engineer makes every effort to formulate the problem in a

form amenable to efficient solution by numerical optimization. This aspect is
perhaps the moct important ingredient to the efficient use of the ADS program
Icr zolution of problems of practical significance.

This manual describes the use of the ADS program and the available program
options. Section 1.1 descrives the crhancements and modifications to the ADS
program subsequent to Version 1.00 (ref. 1). Section z identifies the available
optimization strategies, optimizers and one-dimensional search algorithms.
Section 3 defines the program organization, and Section 4 gives wuser
instructions. Srcticn 5 presgnte caveral cimple exnmples to zid the user in
becoming familiar with the ADS program. Section 6 gives a simple main program
that is useful for general design applications.




1.1 Enhancements and Modifications Since Version 1.00

Since the release of Version 1.00 in May of 1984, numerous modifications
and enhancements have been made to the program. Many of these arc minor and are
transparent to the casual user. These include various formatting changes,
internal logic enhancements to improve program flow, and a fecv actual bugs in
the FORTRAN. Because of the robustness of the basic program, where bugs exist,
their correction often is detected only in special test cases. Examples of this
are correction of an error in using the absolute convergence criteria and
correction of polynomial one-dimensional search when a constraint is being
followed. Other enhancements include checking to insure the initial design does
not violate any side constraints, and checking to be sure the combinations of
strategy, optimizer and one-dimensional search are valid.

Enhancements to the program, beyond the original capability, include
addition of equality constraint capability throughout the program and addition
of a new strategy.

Equality constraints are now available in all options of the progtai,
whereas in Version 1.00 they were only available when using penalty function
strategies. Specifically, equality constraints have been added to optimizers 4
and 5. Here, two approaches were investigated. The first was to formally treat
them ir a mathematical sense. This requires considerable program logic and
usually insures rather precise following of the constraints, but at some
efficiency cost. The second approach, and that used here, was to treat equality
constraints via a linear penalty function and an equivalent inequality
constraint. The basic concept is to first change the sign on the constraint, if
necessary, so that the scalar product of the gradient of the constraint with the
gradient of the objective function is negative. The constraint is then
converted to a non-positive inequality constraint and a linear penalty is added
to the objective. The penalty, together with the conversion to an inequality
constraint have the effect of driving the original equality constraint to zero
at the optimum, but without demanding precise accuracy, with its corresponding
inefficiency. This is in keeping with the general philosophy of ADS of finding
a near optimum design quickly.

A new strategy (ISTRAT=9), called Sequential Convex Programming, developed
by Fleury and Briabant (ref. 2), has been added to ADS. The basic concept of
this strategy is that a linear approximation to the objective and constraint
functions is first created, just as in sequential linear programming. However,
during the approximate optimization sub-problem, either direct or reciprocal
variables are used, depending on the sign of the corresponding components of the
gradients. This creates a conservative convex approximation to the optimization
problem in comparison to a simple linearization. In ceference 2, the method wvas
applied to structural optimization problems in which all design variables were
positive. It was shown that move limits were not required during the
sub-problem and that the method converged quickly to the optimum. When
incorporating the algorithm into ADS, move limits were included, but they are
tess stringent than for sequential linear programming. This is based on the
experience that the decign space can bccome ill-canditioned in some general
applications. Also, reciprocal variables are only used if the design variable
is positive.




In earlier versicns of ADS, when scaling was performed, the scaled
constraints were printed. In this versiou, the constraints are unscaled prior
to printing. In the one-dimensional search, the variabies and function values
are now unscaled prior to printing. Also, in all prinring, a number, followed
by a decimal are now used instead of the earlierv Exx.xx format, to improve
readability.

Perhaps rhe most significant program modification 1is in the scaling
algorithm itrself. The original scaling algorithm appeared quite sophisticated
and, when it worked, it seemed very good. However, in those cases where it
produced poor scaling, the results were often disastrous. Unfortunately, it vas
not possible to predict when it would or would not work. A particularly
disturbing feature was that, sometimes the scaled constraints were satisfied
within a small tolerance during optimization, but at the end when the unscaled
values were printed, they were greatly violated. This provided the important
information that the user had probably not carefully scaled the constraints to

begin with. However, this is not obvious to most users and so0 it often led to
practical difficulties when using ADS.

A completely new scaling algorithm has been used in Version 2.00 which, is
in many ways similar to the time honored normalization method used in the old
CONMIN program. However, in addition to normalizing the design variubies, the
objective and constraints are also scaled. If the problem is naturally well
<caled, the scale factor will be wunity, but if the function and gradient
informarion suggests a better scaling, this will bhe attecmpted. G test

problems, this has been found to be a significant improvement over the previous
scaling routine.

2.0 PROGRAM OPTIONS

In this section, the options available in the ADS program are identified.
At each of the three solution levels, several options are available to the user.

2.1 Strategy

Table 1 lists the strategies available. The parameter ISTRAT =ill he sent
to the ADS program to identify the strategy the user wants. The ISTRAT=0 option
would indicate that control should transfer directly to the optimizer. This
would be the case, for example, when using the Method of Feasible Directions tc
solve constrained optimization problems because the optimizer works directl
with the constrained problem. On the other hand, if the <constraine
optimization problem is to be solved by creating a sequence of unconstrained
minimizations, with penalty functions to deal with constraints, one of the
appropriate strategies would be used.




TABLE 1: STRATEGY OPTIONS

ISTRAT STRATEGY TO BE USED
0 None. Go directly to the optimizer.
i Sequeniial uncorstrained minimization using the exterior penalty
function method (refs. 3, 4).
2 Sequential unconstrained minimization using the linear extended interior
penalty function method (refs. 5-7).
3 Sequential unconstrained minimization using the quadratir extended

intericr pcnalty fun.tion method (refs. 8, 9).

Sequential unconstrained minimization using the cubic extended interior
penalty function method (ref. 10).

Augmented Lagrange Multiplier method (refs. 11-15).

Sequential Linear Programming (refs. 16, 17).

Method of Centers (method of inscribed hyperspheres), (ref. 18).
Sequential Quadratic Programming (refs. 13, 19, 20).

Sequential Convex Programming (ref. 2).
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2.2 Optimizer

Table 2 lists the optimizers available. TIOPT is the parameter used to
indicate the optimizer desired.

TABLE 2: OPTIMIZER OPTIONS

I0PT OPTIMIZER TO BE USED

0 None. Go directly to the one-dimensional search. This option should be
used only for program development.

1 Fletchec-Reeves algorithm for unconstrained minimization (refs. 21).

2 Davidon-Fletcher-Powell (DFP) variable metric method for unconstrained
minimization (refs. 22, 23).

3 Broydon-Fletcher-Goldfarb-Shanno (BFGS) variable metric method for
unconstrained minimization (refs. 24-27).

4 Method of Feasible Directions (MFD) for constrained minimization (refs.
28, 29).

5 Modified Method of Feasible Directions for constrained minimization
(ref. 30).

In chersing the optimizer (as well as strategy and one-dimensional search)
it is assumed that the user 1s knowledgeable enough to choose an algorithm
consistent with the problem at hand. For example, a variable metric optimizer
would not be used to solve constrained problems unless a strategy is used to
create the equivalent unconstrained minimization task via some form of penalty
function.




2.3 One-Dimensional Search

Table 3 1lists the one-dimensional search options available for
unconstrained and constrained problems. Here IONED identifies the algorithm to
be used.

TABLE 3: ONE-DIMENSIONAL SEARCH OPTIONS

IONED ONE-DIMENSIONAL SEARCH OPTION (refs. 3, 31, 32)

1 Find the minimum of an unconstrained function using the Golden Section
method.

2 Find the minimum of an unconstrained function using the Golden Section
method followed by polynomial interpolation.

3 Find the minimum of an unconstrained function by first finding bounds
and then using polynomial interpolation.

4 Find the minimum of an unconstrained function by polynomial
interpolation/extrapolation without first finding bounds on the
solution.

5 Find the minimum of an constrained function using the Golden Section
rethod.

6 ¥ind the minimum of an constrained function using the Golden Section

method followed Ly polynomial interpolation.

7 Find the minimum of an constrained function by first finding bounds and
rhen using polynomial interpolation.

8 “ind the minimum of an constrained functicn by polynomial
irterpolation/extrapolation without first finding bounds on the
selution.

2.4 Allnavable Zombinations of Algorithms

I 1

Yot ail combinations of strategy, optimizer and one-dimen<ional search are
meaningfal. Yor example, constrained one-dimensional scarch is not meaningful
when minimizing unconstrained functions.

Table 4 identifies the combinations of algorithms which are available in
the ADS program. In this table, an X 1is used to denote an acceptable
combination of strategy, optimizer and one-dimensional search. An example is
shown by the heavy line on the table which indicates that constrained
optimization is to be performed by the Augmented Lagrange Multiplier Method
(ISTRAT=5), using the BFGS optimizer (IOPT=3) and polynomial interpolation with
bounds for the one-dimensional search (IONED=3). From the table, it is clear
that 2 large number of possible combinations of algorithms are available.




TABLE 4: COMBINATIONS OF ALGORITHMS ALLOWED

OPTIMIZER
STRATEGY 1 2 3 4 S
0 X X X Y X

1 X X X 0 0

2 X X X 0 0

3 X X X 0 0

4 X X X 0 0

5] X X —>(x] 0 0

6 0 0 0 X X

7 0 0 0 X X

8 0 0 0 X X

) 0 0 0 X X

ONE-D SEARCH

1 X X X 0 0

2 X X X 0 0

3 X X X] 0 0

4 X X X 0 0

5 0 0 0 X X

6 0 0 0 X X

7 0 0 0 X X

8 0 0 0 X X

Appendix A contains an annotated version of Table 4 for convenient
reference once the user is familiar with ADS.

To conserve computer storage, it may be desirable to use only those
subroutines in the ADS system needed for a given corbination of ISTRAT, IOPT and
IONED. Appendix C provides the information necessary for this. Appendix D
lists the ADS subroutines with a very brief description of each.

In writing a program to call ADS, the user should be aware that subroutine
names should not be duplicated. This is seldom a problem with ADS because each
routine begirs with the letters A-D-S, followed by a three digit number (except
the ADS routine itself, which has no trailing numbers. Thus, the user need only
be sure not to use subroutines with this numbering sequence.

3.0 PROGRAM FLOW LOGIC

ADS is called by a user-supplied calling program. ADS does not call any
user-supplied subroutines. Instead, ADS returns control to the calling program
when function or gradient information is needed. The required information is
evaluated and ADS is called again. This provides considerable flexibility n
program organization and restart capabilities.

The algorithms in ADS are called gradient based methods. That is they
require the calculation of the gradients of the objective and constraint
functivns. In most applications, the user does not choose to calculate gradient
information (often it is not possible because of the implicit nature of the
problem). Therefore, the default case is that ADS will calculate al’ needed
gradient information using a first forward finite difference scheme. The
exception to this is that, 1if a variable is at its upper bound, a first

¢




design variables are considered to be absolute and ADS will not cons:der a
design outside the specified bounds, even during gradient computations. The
cepti to rais is that, 1f the bounds are nearly equal, the 1cesultiag
finite differvence step may violate the lowver bound.
ADS has nuwerous internal parameters that control the aptimization

bacewards finite difference step is taken. This is because *he bounds on the

proces . Theose all have default values that are used unless the user
speatfleally cnhanges then.

i 108 can be used in four principal modes:
1. [Dwfaulr Control parameters and finite difference gradients.

2. Ouver-.ride default parameters, use finite difference gradients.
- _olanlt o control parameteors and user-supplied gradients.
“ voeroride default parameters and uter-supplied gradient.

Pias fiver mode is the simplest "black box" approach. In the secand node,
mhe oo over rides the default parameters to "fine tune" the progvam for
cbfo oo In omodes ! oand 4, the user supplies all needed gradient information

( IR S

oot 1 is the program flow diagram for the simplest use of ADS. The user
ho defi. ing the basic control parameters and arrays (to be described in
Soarion owy, “he gradient computation parameter, IGRAD, 1is se. to zero to
indicate that finite difference gradients will be wused. The informaticn
pavameter. INFD, is initialized to zero and ADS is called for optimization.

Waeraver the values of the objective, 0OBJ, and constraints, G(I), I=1,NCONMN, are
4, contvol i returned to the user with INFO=1. The functions are then

i

cvaleatet and ADS is called again., When INFO=0 is returned to the user, the
D]

pptinication is complete.




BEGIN

v

DIMENSION ARRAYS

v
DEFINE BASIC VARIABLES
v
IGRAD = O
v
INFO = 0O
r—————> CALL ADS (INFO . . . )
NO YES
EVALUATE EXIT
OBJECTIVE OPTIMIZATION IS
AND COMPLETE OR AN ERROR
CONSTRAINTS WAS DETECTED
L

Figure 1: Simplified Program Usage; All Default
Parameters and Finite Difference Gradients

7

Figure 7 is the program flow diagram for the case where the user wishes to
over-ride one or more internal parameters, such as convergence criteria or
maximum number of iterations. Here, after initialization of basic parameters
and arrays, the information parameter, INFO, is set to -2. ADS is then called
to initialize all internal parameters to their default values and allocate
storage space for internal arrays. Control is then returned to the user, at
which point these parameters, for example convergence criteria, can be
over-ridden. At this point, the information parameter, INF0O, will have a value
of -1 and must not be changed. ADS is then called again and the optimization
proceeds. Section 4.3 provides a list of internal parameters which may be
modified, along with their locations in the work arrays WK and IWK. A more
detailed explanation of these parameters is given in Appendix F.
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BEGIN

DIMENSION ARRAYS

b
DEFINE BASIC VARIABLES

¥
IGRAD = O
Y
INFO = -2
¥
CALL ADS (INFO . . . )
v

IF INFO=0, EXIT. ERROR WAS DETECTED

ELSE
OVER-RIDE DEFAULT PARAMETERS IN
ARRAYS WK AND IWK IF DESIRED

v

r————————a—CALL ADS (INFO . . . )
|
|

EVALUATE EXIT
OBJECTIVE OPTIMIZATION
AND IS COMPLLTE
CONSTRAINTS
—

Figure 2: Program Flow l.ogic; Over-ride Default
Parameters, Finite Difference Gradients

Tigure 3 is the flow diagram for the case where the user wishes to provide
disnt dnformation to ADS, rather than having ADS calculate this information
ng :inite difference methods. 1In Figure 3, it is also assumed that the user
“ill evovoride some internal parameters, so the difference betwecen Figures 2 and
3 “hat IGRAD is now set to 1 and the user will now provide gradients during
optimizatian.  If the user does not wish to over-ride any default parameters,
INF9 o tnivialized to zero and the first call to ADS is omitted (as in Figure
1). Srew, when control 1s returned to the user, the information parameter will
have a value of 1 or 2 (if INF0O=0, the optimization is complete, as before). 1If
INFO=1, thn objective and constraint functions are evaluated and ADS is called
again, just as in Figure 2. TIf INF0=2, the gradient, DF, of the objective
fan tion is evaluated as well as the gradients of NGT constraints defined by
vector 1C.

P )
—e
v e b= e [




BEGIN
+
DIMENSIGN ARRAYS

¢
DEFINE BASIC VARIABLES

v
IGRAD =1
v
INFO = -2
¢
CALL ADS (INFO . . . )
¢
IF INF0O=0, EXIT. ERROR WAS DETECTED
¥
ELSE
OVER-RIDE DEFAULT PARAMETERS IN
ARRAYS WK AND IWK IF DESIRED
l
——————»CALL ADS (INFO . . . )

YES EXIT
—» OPTIMIZATION
IS COMPLETE

NO
v
EVALUATE EVALUATE
OBJECTIVE GRADIENT OF
AND OBJECTIVE
CONSTRAINTS AND SPECIFIED
, CONSTRAINTS

- ___L$ ¥

figr+ » 3: Program Flow Logic; Over-ride Default
Parameters and Provide Gradients
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4.0 USER INSTRUCTIONS

tro use of the ADS program 1s outlined. The 1 Call
ERa i tirst,  and then the parameters in the callying
e deZanedd. et ion 4.3 tdentifies parameters that the uner ~ay wish
. . cfiective use of ADS. Arvave are degigpnated by
.. Talling Sratement
225 1z invoked by the following FORTRAN calling statement in rhe user's
progura™

Sl

TLLL ADS (INFO,ISTRAT,IOPT,IONED,IPRINT,IGRAD,NDV,NCON,X,
- VLB,VUB,0BJ,G,IDG,NGT,IC,DF,A,NRA,NCOLA, WK, NRWK, IWK,NRIWK)

4.0 Definitions of Parameters in the ADS Calling Statement

5 lists the parameters in the calling statement to ADS. Wheve arravs
are I, the required dimension size is given as the array argumen-

TABLE 5:  PARAMETERS IN THE ADS ARGUMENT LIST

PARAMETER DEFINITION
INES Information parameter. On the first call to ADS, INFG=D or -I. INF0Q=0
15 uzed 1 the user does not wish to over-ride internal pararerters and
INFC--2 15 used if internal parameters are to be changed. When zontrol
returns form ADS to the calling program, INFO will have a wvalue of O,
', nr 2. If INF0=0, the optimization is complete. If INFO=1, the user

must evaluate the objective, 0BJ, and constraint functions, G(I),
I=1,HCON, and call ADS again. If INFO=2, the user must evaluate the
gradient of the objective and the NGT constraints identified by the
vector IC, and call ADS again. If the gradient calculation control,
IGRAD=0, INF0=Z will never be returned from A0S, and all gradient
information is calculated by finite difference within ADS.

I3T2AT Optimization strategy to be used. Available options are identified in
Tabies 1 and 4.

0T Optimizer to be used. Available options are identified in Tables 2
and 4.

fNED One-dimensional search algorithm to be used. Available options are
identified in Tables 3 and 4.

11




TABLE 5 CONTINUED: PARAMETERS IN THE ADS ARGUMENT LIST

PARAMETER DEFINITION

IPRINT A four-digit print control. IPRINT=IJKL where I, J, K and L have the
following definitions:
I ADS system print control.
0 - No print.
1 - Print initial and final information.
2 - Same as 1 plus parameter values and storage needs.
3 - Same as 2 plus scaling information calculated by ADS.
J Strategy print control.
- No print.
- Print initial and final optimization information.
- Same as 1 plus 0BJ and X at each iteration.
Same as 2 plus G at each iteration.
- Same as 3 plus intermediate information.
- Same as 4 plus gradients of constraints.
K Optimizer print control.
0 - No print.
- Print initial and final optimization information.
Same as 1 plus OBJ and X at each iteration.
Same as 2 plus constraints at each iteration.
Same as 3 plus intermediate optimization and one-dimensional
search information.
5 - Same as 4 plus gradients of constraints.
L  One-Dimensional search print control, (debug only).
0 - No print.
1 - One-dimensional search debug information.
2 - More of the same.

s wNa O
t

o
[

Example: IPRINT=3120 corresponds to I=3, J=1, K=2 and L=0.
NOTE: IPRINT can be changed at any time control is returned to the
user.

IGRAD Gradient calculation control. If IGRAD=0 is input to ADS, all
gradient computations are done within ADS by first forward finite
difference. If IGRAD=1, the user will supply gradient information as
indicated by the value of INFO.

NDV Number of design variables contained in vector X. NDV is the same as n
in the mathematical problem statement.

NCON  Number of constraint values contained in array G. NCON is the same
m+L in the mathematical problem statement given in Section 1.0. NCON=0
is allowed.

X(NDV+1) Vector containing the design variables. On the first call to ADS,
this is the user‘'s initial estimate to the design. On return from ADS,
this is the design for which function or gradient values are required.
On the final return from ADS (INF0=0 is returned), the vector X
contains the optimum design.

12




TABLE 5 CONTINUED: PARAMETERS IN THE ADS ARGUMENT LIST

PARAMETER DEFINITION
VILB{XDV-1) Array contalining lowver bounds on the design variables, X. If no
Lower bounds are imposed on one or more of the design variables. :he
_ovresconding component(s) of VLB must be set to a large negar:ve

sav -l ELLD.
VURL UL Avraw containing upper bhounds on the design varianles. X
he aunds are inposed on one or more of the design vactiabvl. ..
Zo anding component(s) of VUB must be set to a large posii:i. .
" say 1.0E-15.

‘alue of the objective function corresponding to the current values of
the design variables contained in X. On the first call to ADS. ©BJ
need not be defined. ADS will return a value of INF0=1 to indicate
that the user must evaluate OBJ and call ADS again. Subsequently, anv
time a value of INFO=1 is returned from ADS, the objective, 0BJ, must
e evaluated for the current design and ADS must be called again. 0BJ
has the same meaning as F(X) in the mathematical problem sta:zement
given in Section 1.0.

G(NCoN) Array containing NCON constraint values corresponding to the current
design contained in X. On the first call to #0S, the constraint values
need not be defined. On return from ADS, if INFO=1, the constraints
must be evaluated for the current X and ADS called again. If NCON=0,
array G should be dimensioned to unity, but no constraint values need
to be provided.

IDG(NCON) Array containing identifiers indicating the type of the constraints
contained in array G.

-
w
o4
'

o

IDG(I) = -2 for linear equality constraint.

IDG(I) = -1 for nonlinear equality constraint.
IDG(I) = O or 1 for nonlinear inequality constraint.
IDG(I) = 2 for linear inequality constraint.

NGT Number of constraints for which gradients must be supplied. HNGT is
defined by ADS as the minimum of NCOLA and NCON and is returned to the
user.

IC(NGT) Array identifying constraints for which gradients are required. IC
is defined by ADS and returned to the user. If INFO0=2 is returned to
the vser, the gradient of the objective and the NGT constraints must be

"evaluated and stored in arrays DP and A, respectively, and ADS must be
called again.

DP(NDV-<1) Array containing the gradient of the objective corresponding to the

current X. Array DP must be defined by the user when INF0=2 is

returned from ADS. This will not occur if IGRAD=0, in which case array

DF is evaluated by ADS.

13




TABLE 5 CONCLUDED: PARAMETERS IN THE ADS ARGUMENT LIST

PARAMETER DEFINITION

A(NRA,NCOLA) Array containing the gradients of the NGT constraints identified
by array IC. That is, column J of array A contains the gradient of
constraint number K, where K=IC(J). Array A must be defined by the
user when INFO=2 is returned from ADS and when NGT.GT.0. This will not
occur if IGRAD=0, in which case, array A is evaluated by ADS. NRA is
the dimensioned rows of array A. NCOLA is the dimensioned columns of
array A.

NRA Dimensioned rows of array A. NRA must be at least NDV+1.

NCOLA Dimensioned columns of array A. NCOLA should be at least the minimum
of NCON and 2#NDV. If enough storage is available, and if gradients
are easily provided or are calculated by finite difference, then
NCOLA=NCON+NDV is ideal.

VK(NRWK) User provided work array for real variables. Array WK is used to
store internal scalar variables and arrays used by ADS. WK must be
dimensioned at least 100, but usually much larger. If the use has not
provided enough storage, ADS will print the appropriate message and
terminate the optimization.

NRWK Dimensioned size of work array WK. A good estimate is
NRWK = 500 + 10*(NDV+NCON) + NCOLA*(NCOLA+3) + N*(N/2+1), where
N = MAX(NDV,NCOLA).

IVK(NRIWK) User provided work array for integer variables. Array IWVK is
used to store internal scalar variables and arrays used by ADS. IWK
must be dimensioned at least 200, but usually much larger. If the user
has not provided enough storage, ADS will print the appropriate
message and terminate the optimization.

NRIWK Dimensioned size of work array IWK. A good estimate is NRIWK = 200 -
NDV + NCON + N + MAX(N,2*NDV), where N=MAX(NDV,NCOLA).

4.3 Over-Riding ADS Default Parameters

Various internal parameters are defined on the first call to ADS which work
well for the "average" optimization task. However, it is often desirable to
change these in order to gain maximum utility of the program. This mode of
operation is shown in Figures 2 and 3. After the first call to ADS, various
real and integer scalar parameters are stored in arrays WK and IWK respectively.
Those which the user may wish to change are listed in Tables 6 through 9,

together with their default values and definitions. If the user wishes to
change any cof these, the appropriate component of WK or IWVK is simply re-defined
after the first call to ADS. For example, if the relative convergence

criterion, DELOBJ, is to be changed to 0.002, this is done with the FORTRAN
statement;

VK(12) = 0.002

because WK(12) contains the value of DELOBJ.
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' TABLE 6: REAL PARAMETERS STORED IN ARRAY WK
MODULES WHERE USED
. PARAXETER LOCATION DEFAULT ISTRAT I0PT IONED
1 0.0 5 - -
2 0.0 7 - -
I' 3 -0.03 - 4,5 -
4 -0.00% - 4,5 -
3 0.001 - 4,5 -
II ' 0.004 - 4,5 _
0.0001 - ALL
3 ABS(FZ)/1000 4LL -
Bl ABS(FZ)/500 ALL -
l : 0 ABS(FZ)/1000 ALL -
Ty B 0.005 - - 1,2.5.h
2 Nn.001 - ALL -
. 23 0.01 ALL - -
83 L4 0.001 ALL - -
DLOB L 15 0.1 - ALL -
l DLOBJ?2 16 1000.0 - ALL -
DX1 17 0.01 - ALL -
DX2 18 0.2 - ALL -
EPSPEN 19 -0.05 2,3,4 - -
' EXTRAP 20 5.0 - - ALL
FDCH 21 0.01 - ALL -
FDCHM 22 0.001 - ALL -
' GMULTZ 23 10.0 8 - -
PSAIZ 24 0.95 8 - -
RMULT 25 5.0 1,5 - -
RMVLMZ (4) 26 0.2 6,7,8,9 - -
l RP 27 10.0 1,5 - -
RPMAX 28 1.0E+10 1,5 - -
RPMULT 29 0.2 1,5 - -
I RPPMIN 30 1.0E-10 2,3,4 - -
RPPRIMNM 31 100.0 2,3,4 - -~
SCFO 32 1.0 ALL ALL ALL
SCLMIN 33 0.001 ALL ALL ALL
I STOL 34 0.001 - 4,5 -
THETAZ 35 0.1 - 4,5 -
YMULT 3 2.618034 - - 1,2,3,5,6,7
l ZR0O 37 0.00001 ALL ALL ALL
PMLT 3 10.0 6,7,8,9 4,5 -
1 If IOPT=4, CT=-0.1
' 2 If IONED=3 or 8, DABALP=0.001
3 If IONED=3 or 8, DELALP=0.05
' 4 If ISTRAT=9, RMVLMZ=0.4
NOTE: FZ is the objective function value for the initial design.
15




TABLE 7: DEFINITIONS OF REAL PARAMETERS CONTAINED IN ARRAY WK

PARAMETER DEFINITION

ALAMDZ Initial estimate of the Lagrange Multipliers in the Augmented Lagrange
Multiplier Method.

BETAMC Adcitional steepest descent fraction in the method of centers. After
meving to the center of the hypersphere, a steepest descent move is
made equal to BETAMC times the radius of the hypersphere.

CT Constraint tolerance in the Method of Feasible Directions or the
Modified Method of Feasible Directions. A constraint is active if its
numerical value is more positive than CT.

CTL Same as CT, but for linear constraints.

CTLMIN Same as CTMIN, but for linear constraints.

CTMIN Minimum constraint tolerance for nonlinear constraints. If a
constraint is more positive than CTMIN, it is considered to be
violated.

DABALP Absolute convergence criteria for the one-dimensional search when
using the Golden Section method.

DABOBJ Maximum absolute change in the objective between two consecutive
iterations to indicate convergence in optimization.

DABOBM Absolute convergence criterion for the optimization sub-problem when
using sequential minimization techniques.

DABSTR Same as DABOBJ, but used at the strategy level.

DELALP Relative convergence criteria for the one-dimensional search when
using the Golden Section method.

DELOBJ Maximum relative change in the objective between two consecutive
iterations to indicate convergence in optimization.

DELOBM Relative convergence criterion for the optimization sub-problem when
using sequential minimization techniques.

DELSTR Same as DELOBJ, but used at the strategy level.

DLOBJ1 Relative change in the objective function attempted on the first
optimization iteration. Used to estimate initial move in the one-
dimensional search. Updated as the optimization progresses.

DLOBJ2 Absolute change in the objective function attempted on the first
optimization iteration. Used to estimate initial move in the one-
dimensional search. Updated as the optimization progresses.

DX1 Maximum relative change in a design variable attempted on the first
optimization iteration. Used to estimate the initial move in the one-
dimensional search. Updated as the optimization progresses.

DX2 Maximum absolute change in a design variable attempted on the first
optimization iteration. Used to estimate the initial move in the one-
dimensional search. Updated as the optimization progresses.

EPSPEN Initial transition point for extended penalty function methods.
Updated as the optimization progresses.

EXTRAP Maximum multiplier on the one-dimensional search parameter, ALPHA in
the one-dimensional search using polynomial interpolation and
extrapolation.

FDCH Relative finite difference step when calculating gradients.

FDCHM Minimum absolute value of the finite difference step when calculating
gradients. This prevents too small a step when X(I) is near zero.
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TABLE 8:

PARAMITIER

ONCIL.UDED: DEFINITTONS OF REALI. PARAMETERS CONTAINED IN ARRAY WK

DEFINITION

Ini*iul penalty parameter in Sequential Quadratic programming.

Move fraction to avoid constraint violations in Sequential Quadratic
Programming. -

Penalty function multiplier for the exterior penalty function method.
Must be greater than 1.0.

Initial relative move limit. Used to set the move limits in
sequential linear programming, method of inscribed hyperspheres and
sequential quadratic programming as a fraction of the value of X(I1),
=1,NDV.

nitial penalty parameter for the exterior penalty function method or
the fugmented Lagrange Multiplier method.

Yaximum value of RP for the exterior penalty function method or the
sugmented Lagrange Multiplier method.

Mulriplier on RP for consecutive iterations.

Minimum value of RPPRIM to indicate convergence.

Inirial penalty parameter for extended interior penalty function
methods.

The user-supplied value of the scale factor for the objective function
if the default or calculated value is to be over-ridden.

Minimum numerical value of any scale factor allowed.

Tolerance on the components of the calculated search direction to
indicate that the Kuhn-Tucker conditions are satisfied.

Mominal value of the push-off factor in the Method of Feasible
Directions.

Multiplier on the move parameter, ALPHA, in the one-dimensional search
to find bounds on the solution.

dumerical estimate of zero on the computer. Usually the default value
is adequate. If a computer with a short word length is used,
ZR0=1.0E~4 may be preferred.

Penalty multiplier for equality constraints when IOPT=4 or 5.

I
I

INTEGER PARAMETERS STORED IN ARRAY IWK

MODULES WHERE USED

- LOCATION DEFAULT ISTRAT IOPT ~~ IONED
1 AV -1 - ALL -
2 1 ALL ALL ALL
2 4n - ALL -
4 : - 1,2,3 -
' J ALl - -
£ TUNED 3 - -
‘ g Aalbl - -
17




TABLE 9: DEFINITIONS OF INTEGER PARAMETERS CONTAINED IN ARRAY IWK

PARAMETER DEFINITION

ICNDIR Restart parameter for conjugate direction and variable metric methods.
Unconstrained minimization is restarted with a steepest descent
direction every ICNDIR iterations.

ISCAL Scaling parameter. If ISCAL=0, no scaling is done. If ISCAL=1, the
design variables, objective and constraints are scaled automatically.

ITMAX Maximum number of iterations allowed at the optimizer level.

ITRMOP The number of consecutive iterations for which the absolute or
relative convergence criteria must be met to indicate convergence at
the optimizer level.

ITRMST The number of consecutive iterations for which the absolute or
relative convergence criteria must be met to indicate convergence at
the strategy level,

JONED The one-dimensional search parameter (IONED) to be used in the
Sequential Quadratic Programming method at the strategy level.

JTMAX Maximum number of iterations allowed at the strategy level.

4.4 User-Supplied Gradients

If it is convenient to supply analytic gradients to ADS, rather than using
internal finite difference calculations, considerable optimization efficiency is
attainable. 1If the user wishes to supply gradients, the flow logic given in
Figure 3 1is used. In this case, the information parameter, INFO, will be
returned to the user with a value of INF0=2 when gradients are needed. The user
calculates the NGT gradients of the constraints identified by array IC and
stores these in the first NGT columns of array A. That is column I of A
contains the gradient of constraint J, where J=IC(I).

4.5 Restarting ADS

Vhen solving large and complex design problems, or when multi-level
optimization 1is being performed, it is often desirable to terminate the

optimization process and restart from that point at a later time. This is
easily accomplished using the ADS program. Figure 4 provides the basic
flowchart for this process. Whenever control is returned from ADS to the

calling program, the entire contents of the parameter list are written to disk
(or a file in a database management system). The program is then stopped at
this point. Later, the program is restarted by reading the information back
from disk and continuing from this point. If optimization is performed as a
sub-problem within analysis, the information from the system level optimization
is written to disk and the analysis is called. The analysis module can then
call ADS to perform the sub-optimization task. Then, upon return from analysis,
the system level information is read back from storage and the optimization
proceeds as usual. From this, it is seen that considerable flexibility exists
for multi-level and multi-discipline optimization with ADS, where the ADS
program is used for multiple tasks within the overall design process.
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The user may wish to stop the optimization at specific times during the
process. The parameter IMAT is array IWK gives general information regarding
the progress of the optimization. Appendix B provides details of

[}
as we:l as other parameters stored in WK and IWK which may
exper:cnted user of ADS.

this parameter
be useful to rthe

BEGIN

IS THIS A
RESTART?

CALL ADS (INFO,. . . )

Y
READ ZONTENTS OF WRITE CONTENTS OF
ADS PARAMETER LIST ADS PARAMETER LIST
FROM DISK FILE

ONTO DISK FILE

!

NO EXIT

CONTINUE

Figure 4: Restavting ADS

4.6 Choosing An Algorithm

ODne difficulty with a program such as ADS, which provides numerous options,
is that of picking the best combination of algorithms to solve a given problem.
While it 1s not possible to provide a concise set of rules, some general
guidelines are offered here based on the author's experience. The user is
strongly encouraged to try many different options in order to gain familiarity

with 4DS and to improve the probability that the best combination of algorithms
is found fov thne particular class of problems being solved.
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UNCONSTRAINED FUNCTIONS (NCON=0, Side Constraints OK)
ISTRAT=0

Is computer storage very limited?
Yes - IOPT=1. Are function evaluations expensive?
Yes - Is the objective known to be approximately quadratic?
Yes - IONED=4
No - IONED=3
No - IONED=1 or 2
No - Is the analysis iterative?
Yes - IOPT=3. Are function evaluations expensive?
Yes - Is the objective known to be approximately quadratic?
Yes - IONED=4
No - IONED=3
No - IONED=1 or 2
No - IOPT=2 or 3. Are function evaluations expensive?
Yes - Is the objective known to be approximately quadratic?
Yes - IONED=4
No - IONED=3
No - IONED=1 or 2

CONSTRAINED FUNCTIONS (NCON.GT.O)

Are relative minima known to exist?
Yes - ISTRAT=1, IOPT=3. Are function evaluations expensive?
Yes - IONED=3
No - IONED=1 or 2
No - Are the objective and/or constraints highly nonlinear?
Yes - Are function evaluations expensive?
Yes - ISTRAT=0, IOPT=4, IONED=7
No - ISTRAT=2, 3 or 5, IOPT=2 or 3, IONED=1 or 2
No - Is the design expected to be fully-constrained?
(i.e. NDV active constraints at the optimum)
Yes - ISTRAT=6, IOPT=5, IONED=6
No - Is the analysis iterative?
Yes - ISTRAT=0, IOPT=4, IONED=7 or
ISTRAT=8, IOPT=5, IONED=7 or
ISTRAT=9, IOPT=5, IONED=7
No - ISTRAT=0, IOPT=5, IONED=7 or
ISTRAT=8, I0PT=5, IONED=7 or
ISTRAT=9, IOPT=5, IONED=7
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GENERAL APPLICATIONS

“fren litrle is known about the nature of the problem beirg snolv
on euxyorience with a wide variety of problems. a very direct approach £ 1en
heve Iar using aDS.  The following table of parameters is offered as a -equence

{
sroouithms. When using ADS the first few times, the user may preier 1o ron
::+ given here, rather than using the decision approach given ascve. 4

i here that a constrained optimization problem is being so i
c

«m iz unconstrained, ISTRAT=0, IOPT=3 and IONED=2 or 3 i¢ re

omIenae,

ISTRAY I0PT IONED IPRIHN

3 5 7 2200
0 c 7 2020
7

-

; 2020
2 5 ' 2200
, g 2 2200
5 3 3 2200
2 3 35 2250
! 3 3 2209
5.0 EXAMPLES
eneider the follewing two-variable optimization problem with two nonlinear
con NS
” Lo D83 = 2¥SORT(Z2)+*A1 + A2

2%A1 + SURT(2)*A2

S e
2[AL o+ SORT(2)*A2]

re

I

0.01 .LE. A1 .LE. 1.0E+20 i=1,2

Thiz 1z actually the optimization of the classical 3-bar truss shown in Figure 2
shere. for simplicity, only the tensile stress constraints in members 1 and 2
i b

(S} “
under load Pl are included. The loads, Pl and P2, are applied sepavately and
~he =—arerial specitic weight is 0.1 1lb. per cubic inch. The structure is
ynmetric so0 X(1l) corresponds to the cross-sectional area of
nd X(2) corresponds to the cross-sectional area of member .

required to he

—amhrrs 1oand




€«——— 10 in. —»|e—10 in. — =

P1 = 20000 1b. P2 = 20000 lb.

Figure 5: Three-Bar Truss

In the source listings for the examples, the arrays are dimensioned
sufficiently large to solve 10 design variable problems with 20 constraints.
This allows the user to create larger problems using these programs as a basis.
Note that the required array dimensions given in this manual are minimums. The
arrays can be dimensioned larger than needed, just as is done here.

5.1 Example 1; All Default Parameters

Figure 6 gives the FORTRAN program to be used with ADS to solve this
problem. Only one line of data is read by this program to define the values of
ISTRAT, IOPT, IONED and TPRINT and the FORMAT is 4I5. VWhen the optimization is
complete, another case may be run by reading a new set ot data. The program
terminates when ISTRAT=-1 is read as data.

Figure 7 gives the results obtained with ISTRAT=0, IOPT=5, IONED=7 and
IPRINT=1000. The reader is encouraged to experiment with this program using
various combinations of the options from Table 4.

5.2 Example 2; Initial Parameters Are Modified

The 3-bar truss designed in Section 5.1 is now designed with the following
changes in the internal parameters:

Parameter New Value Location in WK Location in IWK

CT -0.05 3 -
CTMIN 0.001 6 -
FDCH 0.001 21 -
ITRMOP 2 - 4

The FORTRAN program used here is shown in Figure 8 and the results are
given in Figure 9.
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5.3 Exanple 1 Gradients Supplied by the User

\

Trhe 3-bar rruss designed in Sections 5.1 and .0 1 aesi
nplied gradients. The parameters CT, CTMIN, CTHIN, THETAZ

over-ridden as in Section 5.2. Also, now IPRINT-2000 to proviiic

t optimization output.

e FORTEAN program assocliated with this example is given

Figure 11 gives tne results.
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SIMPLIFIED USAGE OF ADS. THE THREE-BAR TRUSS.

REQUIRED ARRAYS.

DIMENSTION X(11),VLB(11),VUB(11),G(20),IDG(20),I1C(20),DF(11),
A(11,20),WK(1000), 1WK(500)

ARRAY DIMENSIONS.

NRA -2

NCOLA-2

NRWK = 1000

NRIVK =500

PARAMETERS.

IGRAD-0

NDV=2

NCON=2

INITIAL DESIGN.

X(1)-=1.

X(2)-=1.

BOUNDS.

VLB(1)=.01

VLB(2)-.01

VUB(1)=1.0E+20

VUB(2)=1.0E+20

IDENTIFY CONSTRAINTS AS NONLINEAR, INEQUALITY.
IDG(1)=0

IDG(2)=0

INPUT.

READ(5,30) ISTRAT,IOPT,IONED,IPRINT

OPTIMIZE.

INFO=0

CALL ADS (INFO,ISTRAT,IOPT,IONED,IPRINT,IGRAD,NDV,NCON,X,VLB,

1 VUB,0BJ,G,IDG,NGT,IC,DF,A,NRA,NCOLA, WK, NRWK, IWK,NRIWK)

IF (INFO.EQ.0) GO TO 20

EVALUATE OBJECTTVE AND CONSTRAINTS.

OBJ=2.*SQRT(2.)*X(1)+X(2)
G(1)=(2.*X(1)+SQRT(2.)*X(2))/ (2. *X(1)*(X(1)+SQRT(2.)*X(2)))-1.
G(2)=.5/(X(1)+SQRT(2.)*X(2))-1.

GO CONTINUE WITH OPTIMIZATION.

GO TO 10

CONTINUE

PRINT RESULTS.

WRITE(6,40) OBJ,X(1),X(2),G(1),G(2)

STOP

FORMAT (4I5)

FORMAT (//5X,7HOPTIMUM, 5X,5H0BJ =,E12.5//5X,6HX(1) =,E12.5, 5X,

1 6HX(2) =,E12.5/5X,6HG(1) =,E12.5,5X,6HG(2) =,E12.5)

END

Figure 6: Example 1 - All Default Parameters
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A A D
A A D
AAAAAAA D
A A D
A A D
A D

FORTRAN

FO

D
D
D SSSSS
D .
D

DDDDD SS5SS8Ss¢

PROGRAM

R

AUTOMATETD DESIGN SYNTHEGSTIS

(C) COPYRIGHT, EDO, INC., 1987
ALL RIGHTS RESERVED, WORLDWIDE

VERSION 3.00

CONTROL PARAMETERS
ISTRAT 0 I0PT
IGRAD = 0 NDV

5
2

it

)

IONED = 7 IPRINT =
b

NCON =

OPTIMIZATION RESULTS

ORJECTIVE FUNCTION VALUE 2.62899E+00

DESIGN VARIABLES

LOVWER UPPER

VARIABLE BOUND VALUE BOUND
1 1.00000E-02 7.82696E-01 1.00000E+20
2 1.00000E-02 4.15190E-01 1.00000E+20

DESIGN CONSTRAINTS

1) 3.8170E-03 -6.3500E-01

FUNCTION EVALUATIONS = 26

NPTIMUM OBJ = .26290E+01
(1) = .7B270E+Q0 £(2) =
n(1l) = .538170E-02 G(2) =

Figure 7: Example 1 - Output

L415168400
-.63500E.00
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C USAGE OF ADS. OVER-RIDING DEFAULT PARAMETERS. THE THREE-BAR TRUSS.
DIMENSION X(11),VLB(11),VUB(11),G(20),IDG(20),IC(20),DF(11),
1 A(11,20),WK(1000), IWK(500)
C ARRAY DIMENSIONS.
NRA=2
NCOLA=2
NRWK=1000
NRIWK=500
C PARAMETERS.
IGRAD=0
NDV=2
NCON=2
C INITIAL DESIGN.
X(1)=1.
X(2)=1.
C BOUNDS.
VLB(1)=.01
VLB(2)=.01
VUB(1)=1.0E+20
VUB(2)=1.0E+20
C IDENTIFY CONSTRAINTS AS NONLINEAR, INEQUALITY.
IDG(1)=0
IDG(2)=0
C INPUT.
READ(5,30) ISTRAT,IOPT,IONED,IPRINT
C INITIALIZE INTERNAL PARAMETERS.
INFO=-2
CALL ADS (INFO,ISTRAT,IOPT,IONED,IPRINT,IGRAD,NDV,NCON,X,VLB,
1 VUB,0BJ,G,IDG,NGT,IC,DF,A,NRA,NCOLA, WK, NRWK, IVK,NRIWK)
C OVER-RIDE DEFAULT VALUES OF CT, CTMIN, THETAZ AND ITRMOP.
WK(3)=-0.05
VK(6)=0.001
WK(21)=0.001
IVK(4)=2
C OPTIMIZE.
10 CALL ADS (INFO,ISTRAT,IOPT,IONED,IPRINT,IGRAD,NDV,NCON,X,VLB,
1 VUB,0BJ,G,IDG,NGT,IC,DF,A,NRA,NCOLA, WK, NRWK, IWK,NRIVK)
IF (INFO.EQ.0) GO TO 20
c EVALUATE OBJECTIVE AND CONSTRAINTS.
0BJ=2.*SQRT(2.)*X(1)+X(2)
G(1)=(2.*X(1)+SQRT(2.)*X(2))/(2.*X(1)*(X(1)+SQRT(2.)*X(2)))-1.
G(2)=.5/(X(1)+SQRT(2.)*X(2))-1.

C GO CONTINUE WITH OPTIMIZATION.
GO TO 10

20 CONTINUE

C PRINT RESULTS.
WRITE(6,40) OBJ,X(1),X(2),G(1),G(2)
STOP

30 FORMAT (4I5)

40 FORMAT (//5X,7HOPTIMUM,5X,5HOBJ =,E12.5//5X,6HX(1) =,E12.5,5X%,
1 6HX(2) =,E12.5/5X,6HG(1) =,E12 S,5X,6HG(2) =,E12.5)
END

Figure 8: Example 2 - Modify Default Parameters
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FORTRAN
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F

D D E

DDDDD SSSS5S8S

DDDDDD SSSSSS

CcC oo oo
[%2]
w
wn
wn
w

PROGRAM

0 R

S I G U S Y N1 H

(C) COPYPIGHT, EDO, INC., 1987
ALl RIGHTS RESERVED, WORLDWIDE

CONTROL PARAMETERS
ISTRAT
IGRAD

i

VERSION 3.00

0 IOFT =
0 NDV =

5 IONED
2 NCON = 2

i

OBJECTIVE FUNCTION VALUE

DESIGN VARIABLES

LOVER
VARIABLE BOUND \%
1 1.00000E-02 7.86
Z 1.00000E-02 4.13

DESIGN CONSTRAINTS

2.63726E+00

UPPER
ALUE BOUND
349F-01 1.00000E+20
130E-01 1.00000E+20

1) 6.5273E-04 -6.3520E-01

FUNCTION EVALUATIONS = 29
OPTIMUM 0BJ = .26373E+0
(1) = .78635E+00 X(2)
G(1) - .A5273E-03 G(2)

Figure 9: Example 2

- ODutput

1

.41313E+00
= ~.63520E+00

27

IPRINI

100




USAGE OF ADS. OVER-RIDING DEFAULT PARAMETERS, AND PROVIDING
GRADIENTS. THE THREE-BAR TRUSS.
REQUIRED ARRAYS.
DIMONSION X(il),VLB(11),vUB{11),G{20),IDC(29),7C(20),NF(11).
1 A(11,20),WK(1000), IWK(500)
DIMENSION B(2,2)
C ARRAY DIMENSIONS.
NRA=2
NCOLA=2
NRWK=1000
NRIWK=500
C PARAMETERS.
IGRAD=1
NDV=2
NCON=2
C INITIAL DESIGN.
X(1)=1.
X(2)=1.
C BOUNDS.
VLB(1)=.01
VLB(2)=.01
VUB(1)=1.0E+20
VUB(2)=1.0E+20
C IDENTIFY CONSTRAINTS AS NONLINEAR, INEQUALITY.
IDG(1)=0
IDG(2)=0
c INPUT.
READ(5,70) ISTRAT,IOPT,IONED,IPRINT
c INITIALIZE INTERNAL PARAMETERS.
INFO=-2
CALL ADS (INFO,ISTRAT,IOPT,IONED,IPRINT,IGRAD,NDV,NCON,X,VLB,
1 VUB,0BJ,G,IDG,NGT,IC,DF,A,NRA,NCOLA, WK, NRWK, IVK, NRIWK)
C OVER-RIDE DEFAULT VALUES OF CT, CTMIN, THETAZ AND ITRMOP.
WK(3)=-0.05
WK(6)=0.001
WK(21)=0.001
IVK(4)=2
C OPTIMIZE.
10 CALL ADS (INFO,ISTRAT,IOPT,IONED,IPRINT,IGRAD,NDV,NCON,X,VLB,
1 VUB,0BJ,G,IDG,NGT,IC,DF,A,NRA,NCOLA, VK, NRWK, IWK, NRIWK)
IF (INFO.EQ.0) GO TO 60
IF (INFO.GT.1) GO TO 20
C EVALUATE OBJECTIVE AND CONSTRAINTS.
OBJ=2.*SQRT(2.)*X(1)+X(2)
G(1)=(2.*X(1)+SQRT(2.)*X(2))/ (2. *X(1)*(X(1)+SQRT(2.)*X(2)))-1.
G(2)=.5/(X(1)+SQRT(2.)*X(2))-1.
C GO CONTINUE WITH OPTIMIZATION.
GO TO 10
20 CONTINUE

oNeNe]

Figure 10: Example 3 - Gradients Supplied by the User
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C GRADIENT OF QBJ.
DF(1)=2.=SQRT(2.)
DF(2)=1.0
IF (NGT.EQ.0) GO TO 10
CONSTRAINT GRADIENTS. USE ARRAY B FOR TEMPORART STORAGE.
D1=(X(1)+SQRT(2.)*X(2))**2
C Gyl).
B(1,1)=-(2.#%X(1)*X(1)+2.*%SQRT(2.)*X(1)*X(2)+2.*X(2)*X(2))/
1 (2.%X(1)*X(1)*D1)
B(2,1)=-1./(SQRT(2.)*D1)
C G(2).
B(1,2)=-0.5/D1
B(2,2)=SQRT(2.)*B(1,2)
C STORE APPROPRIATE GRADIENTS IN ARRAY A.
DO 30 J=1,NGT
K=1IC(J)
A(l,J)=B(1,K)
30 A(2,J)=B(2,K)
GO TO 10
0 CONTINUE
C PRINT RESULTS.
WRITE(6,80) OBJ,X(1),X(2),G(1),G(2)
STOP
70 FORMAT (41I5)
80 FORMAT (//5X,7HOPTIMUM,5X,5H0BJ =,E12.5//5X,6HX(1) =,E12.5,5¥,
1 6HX(2) =,E12.5/5X,6HG(1l) =,E12.5,5X,6HG(2) =,E12.5)
END

[}

Figure 10 Concluded: Example 3 - Gradients Supplied bv rhe User
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FORTRAN PROGRAMN
FOR
AUTOMATED DESIGN SYNTHEGSTIS

(C) COPYRIGHT, EDO, INC., 1987
ALL RIGHTS RESERVED, WORLDWIDE

VERSION 3.00

CONTROL PARAMETERS

ISTRAT = 0 IOPT - 5 IONED - 7 IPRINT = 2020
IGRAD = 1 NDV = 2 NCON = 2
SCALAR PROGRAM PARAMETERS
REAL PARAMETERS
1) ALAMDZ =  .00000E+00 20) EXTRAP = 5.00000E+00
2) BETAMC =  .00000E+00 21) FDCH = 1.00000E-03
3) CT = -5.00000E-02 22) FDCHM = 1.00000E-03
4) CTL = -5.00000E-03 23) GMULTZ = 1.00000E+01
5) CTLMIN = 1.00000E-03 24) PSAIZ = 9.S50000E-01
6) CTMIN = 1.00000E-03 25) RMULT = 5.00000E+00
7) DABALP = 1.00000E-04 26) RMVLMZ = 2.00000E-01
8) DABOBJ = 3.82843E-03 27) RP = 1.00000E+01
9) DABOBM = 7.65685E-03 28) RPMAX = 1.00000E+10
10) DABSTR = 3.82843E-03 29) RPMULT = 2.00000E-01
11) DELALP = 5.00000E-03 30) RPPMIN = 1.00000E-10
12) DELOBJ = 1.00000E-03 31) RPPRIM = 1.00000E+02
13) DELOBM = 1.00000E-02 32) SCFO = 1.00000E+00
14) DELSTR = 1.00000E-03 33) SCLMIN = 1.00000E-03
15) DLOBJ1 = 1.00000E-01 34) STOL = 1.00000E-03
16) DLOBJ2 = 1.00000E+03 35) THETAZ = 1.00000E-01
17) DX1 = 1.00000E-02 36) XMULT = 2.61803E+00
18) DX2 = 2.00000E-01 37) ZRO = 1.00000E-05
19) EPSPEN = -5.00000E-02 38) PMLT = 1.00000E+01
INTEGER PARAMETERS
1) ICNDIR - 3 4) ITRMOP - 2 6) JONED = 7
2) ISCAL = 1 5) ITRMST = 2 7) JTMAX = 20
3) ITMAX = 40

Figure 11: Example 3 - Output
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ARRAT STORAGE REQUIREMENTS
DIMENSIONED REQUIRED
ARRAT SIZE SIZE
WK 1000 1949
Tt 300 184
IOPT = 5; MODIFIED METHOD OF FEASIBLYE DIRECTIONS

-~ INITIAL DESIGN

OBJ = 3.82843E+00
DECISION VARIABLES (X-VECTOR)
1) 1.00000E+00 1.00000E+0Q0

LOVER BOUNDS ON THE DECISION VARIABLES (VLB-VECTOR)
i 1.00000E-02 1.00000E-02

UPPER BOUNDS ON THE DECISION VARIABLES (VUB-VECTOR)
1) 1.00000E+20 1.00000E+20

CONSTRAINT VALUES (5-VECTOR)
1) -2.92893E-01 -7.92893E-01

-- ITERATION 1 0BJ = 2.79647E+00
DECISION VARIABLES (X-VECTOR)

1) 6.75687E-01  8.85338E-01

~-— ITERATION 2 OBJ = 2.63882E+00

DECISION VARIABLES (X-VECTOR)
1) 7.98080E-01 3.81510E-01

-- ITERATION 3 OBJ = 2.63724E+00

DECISION VARIABLES (X-VECTOR)
1) 7.86367E-01 4.13059E-01

Figure 11 Continued: Example 3 - OQutput
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FINAL OPTIMIZATION RESULTS
NUMBER OF ITERATIONS = 4
OBJECTIVE = 2.637724E+00

DECISION VARIABLES (X-VECTOR)
1) 7.86367E-01 4.13059E-01

CONSTRAINT VALUES (G-VECTOR)
1) 6.60856E-04 -6.35175E-01

CONSTRAINT TOLERANCE, CT = -2.50000E-02 CTL = -2.50000E-03
THERE ARE 1 ACTIVE CONSTRAINTS AND O VIOLATED CONSTRAINTS
CONSTRAINT NUMBERS

1
THERE ARE 0 ACTIVE SIDE CONSTRAINTS
TERMINATION CRITERIA

KUHN-TUCKER PARAMETER, BETA = 9.65595E-06 IS LESS THAN 1.00000E-03

OBJECTIVE FUNCTION VALUE 2.63724E+00

DESIGN VARIABLES

LOWER UPPER

VARIABLE BOUND VALUE BOUND
1 1.00000E-02 7.86367E-01 1.00000E+20
2 1.00000E-02 4.13059E-01 1.00000E+20

DESIGN CONSTRAINTS

1) 6.6086E-04 -6.3517E-01

FUNCTION EVALUATIONS = 21
GRADIENT EVALUATIONS = 4
OPTIMUM 0BJ = .26372E+01
X(1) = .78637E+00 X(2) = .41306E+00
G(l) = .66086E-03 G(2) = -.63517E+00

Figure 11 Concluded: Example 3 - OQutput
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6.0 MAIN PROGRAM FOR SIMPLIFIED USAGE OF ADS

cral-purpose calling program for use with ADS. The
fiicient to solve problems of up to 20 design variables
1

L
are cdinmensioned su
Y

O sonstraints. Arvravs IC and A ave dimensioned to allow for evaluation of
tuoopradione “herever a question mark (7)) 15 given, 1+ ig
nat othe user will osupply the appropriate infermation. Note that the

Aoly=7, =1,V s not an implied FORTRAMN DO LOOP, but simply denntes
Al of DDV design variables must be defined heve
ne % is the uvser-supplied subroutine for evaluating functions
(i ser-supriied). The calling statenment iz

CALL RV L CINEG LDV NCIN 0BT X, G, DF LV HGT, IC, A NRA)

The para~eters INFO, NDV, NCON, X, NGT, IC and NRA are input to Subrourine EVAL,
while 03, G. DF and A are output. Depending on the user nreeds, this may be
simplifizd. For example, if IGRAD=0 and NDV and NCON are not required by the
analysiz. the calling statement may be

10

AL EVAL (0BJ,X,G)

1t control may be added so, after the optimization is complete, EVAL
=4 again to print analysis information.

SIMPLTIFIED USAGE OF THE ADS OPTIMIZATION PROGRANM.
MENSION X(Zl) VLB(21),VUB(21),G(100),IDG(100),IC(30),DF(21),

,ND
“LB(I)=?, I=1,NDV
VUB(I)=7, 1I=1,

IDG(I)=? 1I=1,NCON

L“T7“T~.
in
IOUED:?

IPRINT=?

INEn=9

ChrLlL ADS (INFO,ISTRAT,IOPT,IONED,IPRINT,IGRAD,NDV,NCON,X,

* GLB.VIIB,0BJ,G,IDG,NGT,IC,DF,A,NRA,NCOLA, WK, NRWK, IWK,NRIWK)
ALl EVAL (INFO,NDJ,nCON 0BJ,X,G,DF,NGT,IC,A,NRA)
TINEN.GT.0Y) GO TO 10

PUIMIZATION IS5 COMPLETE.  PRINT RESULTS.

S
I
¥

osmran Tor Simplified Usage of ADS
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APPENDIX A

QUICK REFERENCE TO ADS OPTIONS

I0PT OPTIMIZER
1 Fletcher-Reeves
—— 2 Davidon-Fletcher-Powell (DFP)
—_— 3 Broydon-Fletcher-Goldfarb-Shanno (BFGS)
— 4 Method of Feasible Directions
r 5 Modified Method of Feasible Directions
STRATEGY ISTRAT 1IOPT 1 2 3 4 5
None 0 X X X X X
SUMT, Exterior 1 X X X 0 0
SUMT, Linear Extended Interior 2 X X X 0 0
SUMT, Quadratic Extended Interior 3 X X X 0 0
SUMT, Cubic Extended Interior 4 X X X 0 0
Augmented Lagrange Multiplier Meth. 5 X X X 0 0
Sequential Linear Programming 6 0 0 0 X X
Method of Centers 7 0 0 0 X X
Sequential Quadratic Prcgramming 8 0 0 0 X X
Sequential Convex Programming 9 0 0 0 X X
ONE-DIMENSIONAL SEARCH IONED

Golden Section Method 1 ). X X 0 0
Golden Section + Polynomial 2 X X X 0 0
Polynomial Interpolation (bounded) 3 X X X 0 0
Polynomial Extrapolation 4 X X X 0 0
Golden Section Method 5 0 0 0 X X
Golden Section + Polynomial 6 0 0 0 X X
Polynomial Interpolation (bounded) 7 0 0 0 X X
Polynomial Extrapolation 8 0 0 0 X X

NOTE: An X denotes an allowed combination of algorithms.
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APPENDIX

F-y

STORED IN

DECRMATION

ARRAYS WK AND IWK

s WK and IWK contain Information calculzted by aDS which i< cometimes
= N : ing the progress of the optimization. Tavles B 1 and B-Z
Aol ~hish mar be of interest to the user.
araTte ol he changed by the user during the optimization pircane
TABLE B-1 REAL PARAMETERS STORED IN ARRAY WK

LOCATION DEFINITION

32 Move parameter in the one-dimensional search.
=3 Alpha at the strategy level for ISTRAT=8.
3. The value of the penalty in SUMT methods.
Ak 35 The slope of the 0BJ versus ALPHA function in the
one-dimensional search.
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TABLE B-2:

PARAMETER

LOCATION

INTEGER PARAMETERS STORED IN ARRAY IWK

DEFINITION

IDAB3
IDEL

IDEL3
IFCALL

IGCALL

IMAT

ITER
JTER
LGOTO

NAC
NACS
NVC
NXFD

29

34

45
46
54

58
59
68
69

Number of consecutive times the absolute
convergence criterion has been satisfied at the
optimization level.

Same as IDAB, but at the strategy level.

Number of consecutive cimes the relative

convergence criterion has been satisfied at the

optimization level.

Same as IDEL, but at the strategy level.

The number of times the objective and constraint

functions have been evaluated.

The number of times analytic gradients have been

evaluated.

Pointer telling the status of the optimization

process.

0 - Optimization is complete.

1 - Initialization is complete and control is being
returned to the user to over-ride default
parameters.

2 - Initial function evaluation.

Calculating analytic gradients.

4 - Calculating finite difference gradients. NXFD
identifies the design variable being changed.

5 - One-dimensional search is being performed.

See LGOTO.

Iteration number at the optimization level.

Iteration number at the strategy level.

Location in one-dimensional search.

1 - Finding bounds on the solution.

2 - Golden Section method.

3 - Polynomial interpolation after Golden Section.

4 - Polynomial interpolation after getting bounds.

5 - Polynomial interpolation/extrapolation.

Number of active constraints.

Number of active side constraints.

Number of violated constraints.

Design variable being perturbed during finite

difference gradients.

W
l
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ST JEDF PECIFIED COMBINATION 7 ITTRAT, 10PT ANDOTONY
2in comvination of ISTRAT, 10PT and LONED, only a
S the ADS system are used. Therefore, it compurc
esired only to load those routines which are
is ult in "unsatisfied externals" at run time, bu!
the can be executed anyway since the unsatisfied
routines ave OE ace uall called. Below is a list of the rourtines
sive: )mh*ﬁat on of anorlthns In some cases, slightly more
ol than are absolutely necessary, but they are short and a more
Liss be undully complicated.
ALWAYS LOAD THE FOLLOWING SUBROUTINES:
4DS, ADSOO1, ADSQ02, ADSOQ4. ADS0O5, ADS0O06, ADS007, ADSOQS9, ADSO1C,
ADS102, ADS103, ADS105, ADS112, ADS122, ADS201, ADS206, ADS211, ADS2l6
ADS237, aDS40l, aDS402, ADS403, ADS420, ADS503, ADS504, ADSS06,
ADSS10
STRATEGY LEVEL
Depending on the value of ISTRAT, the following subroutines are also
requlired
ISTEAT = 2. N»o strategy routines are added. Go to the optimizer level.
ISTPAT - 1. Add: ADSM03, 1DS301, ADS302, ADSS08
ISTRAT = 7, Aadd: ADSQO08, aDS302, ADS303, ADS308, ADS508
ISTRAT = 3, Add: ADS008, ADS302, ADS304, ADS308, ADS508
ISTRAT = 4, add: ADS0O08, ADS302, ADS305, ADS308, ADS508
ISTRAT = 5, Add: ADS008, ADS302, ADS306, ADS307, ADS508
IST?AT = 6, Add: ADS320, ADS321, ADS323, ADS333
IST2AT = 7, Add: ADS323, ADS330, ADS331, ADS333
I07¥s7 . B, Add: ADS207, ADS217, ADS218, ADS221, ADS223, ADS310, ADS333,
ADS371, ADS375, ADS376, ADS377, ADS378, ADS404, ADSS07,
ADSS08, ADS509
T K ADS207, ADS217, ADS218, ADS221, ADS223, ADS325, ADS32%6,
ADSEND
39

APPENDIX C

SV I ]

needed
routines are




OPTIMIZER LEVEL

Depending on the value of TIOPT, the Zfuliowing subroutines are also
required:
IOPT = 1, Add: ADS204, ADS213, ADS214, ADS509
IOPT = 2, Add: ADS213, ADS214, ADS235, ADS404, ADS503, ADS509
I0PT = 3, Add: ADS213, ADS214, ADS235, ADS404, ADS503, ADS509
I0PT = 4, Add: ADS201, ADS205, ADS207, ADS217, ADS218, ADS221, ADS223,

ADS507 :

I0OPT = 5, Add: ADS201, ADS202, ADS203, ADS207, ADS209, ADS217, ADS218,

ONE-DIMENSIONAL SEARCH LEVEL

ADS221, ADS223, ADS235, ADS507

Depending on the value of IONED, the following subroutines are also

required:

IONED

IONED

1-4, Add: ADS116, ADS117, ADS118, ADS121, ADS126, ADS127

5-8, Add: ADS101, ADS104, ADS106, ADS108, ADS109, ADS110,

ADS111, ADS115, ADS119, ADS123, ADS124, ADS125,
ADS502
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APPENDIX D

ADS STYSTEM SUBROUTINES

in the ADS system are listed here with & oo
Mot subroutines are internally documen-od, and e uter
cvam listing for more details.

3

1oADSD%2 are control level routines.  ADSIUI-ATIIIN are

oo : routines, ADSZ01-ADS2973 ar T fere)
e ° re stratesy level routines. A t

and 237 are utili:y routines.
ROUTINE PURPOQOSE
AD3 - Main control routine for optimization.
ADSNOL - Control one-dimensional search level.
ADSO02 - Control optimizer level.

ADSO03 - Control strategy level.

.

ADS004 - Define work array storage allocations.

ADS00S - Initialize scalar parameters to their default values.
ADSOCE - Initialize scale factors.

ADS0O0T - Calculate scale factors, scale, unscale.

ADSCTA - Calcularte gradients of pseudo-objective for ISTRAT=1-5.
ADGL - Reorder IC and A arrays.

aDST L - Calculates convergence criteria parameters.

ADSIOE -~ Coefficients of linear polynomial.

ADSIOT - Coefficients of quadratic polynomial.

ADS1T - Cnefficients of cubie polynomial.

ADSL7N - Zeroes of polynomial to third-order.

ADSIOE - Minimums of polynomial to third-order.

ADET - Evaluate n-th order polynomial.

ADSTR - Find minimum of a function by polynomial interpola. on.
ALET Pund verees of a function by polynomial intevpolation.

.
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ROUTINE

ADS110
ADS111
ADS112
ADS115
ADS116

ADS117

ADS118

ADS119

ADS121

ADS122

ADS123

ADS124

ADS125

ADS126

ADS127

ADS201
ADS202

ADS203

ADS204
ADS205
ADS206

ADS207

PURPOSE

Evaluate slope of n-th order polynomial.

Polynomial interpolation for constraint boundaries.

Find ALPMAX so NDV side constraints are encountered.
Control one-dimensional search for constrained functions.
Control one-dimensional search for unconstrained functions.

Polynomial interpolation of unconstrained function, within
bounds.

Polynomial interpolation of unconstrained function, no
bounds given.

Polynomial interpolation of constrained function, no bounds
given.

Find bounds on minimum of unconstrained function.

Initial interior points for Golden Section method.

Constrained one-dimensional search by Golden Section method.

Update bounds and get new interior point in Golden Section
method, constrained.

Find bounds on minimum of constrained function.

Unconstrained one-d ' mensional search by Golden Section
method.

Update bounds and get new interior point by Golden Section
method, unconstrained.

Identify NGT most critical constraints.
Invert matrix B and store back in B.

Delta-X back to boundary in Modified Method of Feasible
Directions.

Fletcher-Reeves unconstrained minimization.
Method of Feasible Directions.
X = Xold + ALPHA*S, subject to side constraints.

Maximum component (magnitude) of each column of A.
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ADSZI-

ADSIH
ADS307
ADS308
4DS310
ADS32Z0

ADS3Z1

PURPOSE

Calculate B = A-Transpose times A.

lrdate convergence parameters IDEL and IDAB.

- Calzulate initial ALPHA for one-dimensional search based on

chiective funcrion value.

Cav:ulate initial ALPHA for one-dimensional search based on
¥-values.

inite difference gradients of objective and constraints.

2zninnfinding task for Methods of Feasible

Solve special LP sub-problem from ADS217.

Push-off factors for Methods of Feasible Directions.
Identify active side constraints.

Modified Method of Feasible Directions.

Variable Metric Methods, IOPT=2,3.

Search direction for Variable Metric Hethods.

Penalty for equality constraints, IOPT=4,5.

Exterior Penalty Function Method, ISTRAT=1.

Calculates penalty for penalty function methods, ISTRAT=1-5.
Linear Extended Penalty Function Method, ISTRAT=2.

Quadratic Extended Penalty Function Method, ISTRAT=3.

- Cubic Extended Penalty Function Method, ISTRAT=4.

Adugmented Lagrange Multiplier Method, ISTRAT=5.
Update Lagrange Multipliers, ISTRAT=S.
Calculate penalty parameters, ISTRAT=S.
Sequential Quadratic Programming, ISTRAT=8.
Sequential Linear Programming, ISTRAT=6.

Control solution of LP sub-problem, ISTRAT=6.
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ROUTINE PURPOSE

ADS323 -~ Update move limits, ISTRAT=6,7.

ADS325 - Sequential Convex Programming, ISTRAT-=9.

ADS326 - Solve convex sub-problem, ISTRAT=9.

ADS330 - Method of Centers, ISTRAT=7.

ADS331 - Control solution of LP sub-problem, ISTRAT=7.

ADS333 - Calculate maximum constraint value.

ADS371 - Control solution of QP sub-problem, ISTRAT=8.

ADS375 - Temporary objective, ISTRAT=8.

ADS376 - Gradient of pseudo-obijective for one-dimensional search,
ISTRAT=8.

ADS377 - Change in objective gradients, ISTRAT=8.

ADS378 - Update Hessian matrix, ISTRAT=8.

ADS401 - Print arrays.

ADS402 - Print array title and array. Calls ADS401.

ADS403 - Print scalar control parameters.

ADS404 - Print Hessian matrix.

ADS420 - Print final optimization results.

ADS501 - Evaluate scalar product of two vectors.

ADS502 - Find maximum component of vector.

ADS503 - Equate two vectors.

ADSS504 - Matrix-vector product.

ADS506 - Initialize symmetric matrix to the identity matrix.

ADS507 - Normalize vector by dividing by maximum component.

ADS508 - Calculate gradient of pseudo-objective for ISTRAT=1-5.
Called by ADS008.

ADS509 -~ Identify active side constraints.

ADS510 - Scale, unscale the X-vector.
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APPENDIX E

{3 CASE OF DIFFICULTY

gramo ot orvelatively robust, and there should seldom be a case

s 15 made during the oprtimization. Also, numcrous in
to avoilrd exponent overflows, divide by zero, and similar run

wien something seems wrong, it can be traced to the basic zetup of

ion problem or (more often) simple programming errors. Thus, while
to project all possible errors, some are common enough to be
er the following short list of jitems to check.

= all array dimension statements. Be sure the values of NRa, HCOLA,
NRIWK are r~orrect. ADS is written in single precision and double
should really not be needed at the optimization level. If the
ogram is written in double precision, be sure to transfer all
and arrays to equivilant single dimension values before calling 4DS
v them back on return. This effects very few parameters and
i3 sometimes overlooked, and is very difficult to debug.

2% the parameter list for calling ADS. Be sure all parameters ar
proecent and o the ovder. A common error is to create a program with
column lires. while using a compiler that ignores all
2

T

X
chary i ars after column 7

the automatic scaling and try again. Use the over-ride capability
wK(2) = 0. Sometimes the scaling actually makes the conditioning of
the problem worse, although in Version 2.00 it 1is greatly improved from
before. If -he difficulties still exist, leave the scaling turned off during
further testing.

4. Zet the print control, IPRINT to 3500 if ISTRAT is greater than zero or 3050
if ISTRAT is equal zero. This will cause gradient information to be printed
during the optimization. If the gradient of the objective or any constraint
functicn has all zeroes, this parameter is not a functicn of the design

2s. Jhile it is theoretically possible to have a zero gradient, it is

v rarve on a digital computer. Check problem formulation.

5. Chezk the order of magnitude of the components of the gradients. A well
coenditisned problem will have roughly the same order of magnitude values
(v:7tin a factor of 100). TIf one term is several orders of magnitude greater
than the others it may help to scale this design variable by dividing by a
netser o f orhar order of magnitude. A common error in prohlem formulation is

RN function, say O that must be less than QQ, where Q) is on the order

S S in zreating the constriant (which is required tn be less than or
ey oL tcomers) we may write G(I) = Q - Q0. This will make the constraint very
Al s to deal with by ADS, because Q must equal about 9,299.95 before the
~onocriant s oconsidered active.  Therefore, it is important to scale the

as G(I)y = 0/0Q0 - 1. Now a constraint value of -0.01 will identify
int as being within one percent of being critical.
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6.

7.

As a last resort, turn on the one-dimensional search print control (set the
last digit of IPRINT to 5). Plot the objective and constraint functions
versus the move parameter, ALPHA. If one or more are extremely nonlinear,
reformulation of the problem by dividing that function by a large number is
indicated. Another possibility here is that the finite difference gradient
parameters, FDCH and FDCHM are either too large or too small. If the analysis
is iterative, it often helps to try FDCH = 0.02 or larger and FDCHM = 0.01 or
larger. This will mask the inacuracies in the analysis. On ther other band,
if the analysis is calculated very precisely as functions of the design
varibles, an order of magnitude smaller than the default value is indicated.

If the last resort fails, call EDO. We will do our best to help.
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APPENDIX F

(NTERNAL PARAMETER DESCRIPTION

iption of the ADS internal parameters $s given.

Wil : £, 1t is somewhat more derailed than th.. iiptic
- ton 4.3,

Cara ) ed 1n alphebetical ovder. T¢ 1t is unlirely that

che anaeta nouid be zhanged trom its defaul: value, this - stated.

n
of the algorithms contained in ADS, and may bhe
for a more detalled description of how a parameter is used in a given

REAL PAPAMETERS CONTAINED IN WK

ALAMOT - Used for ISTRAT = 5. 1Initial values for the Lagrange Multipliers for
tne Augnented Lagrange Multiplier method. Applies to all constraints.
Jsually the default values are adequate.

327AMC - Used only with ISTRAT = 7. This provides an additional steepest
descent move in the method of centers beyond the move to the center of the
hwonersphere. The basic method moves to the center of the hyopersphere
beunded by the linear approximation to the current objective funciian and
constriants. In problems that are not too highly nonlinear, this may be
quite conservative. Using BETAMC, it is possible to move an additional
amount in a steepest descent direction in order to speed convergence. If
“he move is too far (it violates constriants) it will be avtcraticalily
vreduced, but at the expense of a function evaluation. The genera: concept
s shown in the figure below, where the intial move is to the center of
“he circle (a hypersphere in two-dimensional space is a circle). The
additional move is in the direction negative to the gradient of the
objective function. BETAMC = 1.0 will move to the edge of the circle. A
larger value is usually too optimistic, while a value of 0.5 will often be

about right.
VF
EXTRA
MOVE




CT -

CTMIN

Used with IOPT = 4 or 5. Also used with ISTRAT = 1-9 to a slightly
lessor degree. Constraint tolorance for nonlinear inequality constriants.
This parameter defines when a constraint is considered active, and is
perhaps the most important parameter for nonlinear constrained
optimization.

One of the key issues in constrained optimization is determining when a
constraint is numerically "critical." If a constriant, G(I) is
numerically greater than CT, it is considered critical for purposes of
finding a new search direction or deciding if the optimum has been found.
This is also why constraint should be normalized to order of magnitude of
unity. Thus if G(I) is numerically greater than CT (say -0.03) then it is
assumed to be within 3 percent of being critical. Numerically, this is
considered to be an "active" ronstriant.

For highly nonlinear constraints, it is often helpful to make CT more
negative, say -0.10. By this method, the constraint is "trapped" sooner
and the optimization process will direct the design away from this
constraint. On the other hand, if the constriant is nearly linear, it may
help to make CT closer to zero, say -0.01. Then, when interpolating for
G(I) = 0, a more precise value of G(I) is obtained. In either case, the
value of CT is progressively reduced during optimization to a value of
~CTMIN, which is the value at which a constraint becomes strongly
critical. In fact, if G(I) exceeds CTMIN (a positive) number, the
constriant is considered to be violated. See the definition of CTMIN.

For IOPT = 4 and 5, if a constriant repeatedly becomes active on one
iteration and inactive on the next, CT should be increased in magnitude
(say try CT = -0.1 or -0.15), or the offending constraint should be

divided by a factor of ten to reduce its sensitivity.

Note that in ADS, equality constraints are converted to equivilant
inequality constriants. Therefore, the definitions of CT, CTMIN, CTL and
CTLMIN apply to equality constraints as well.

- Used with IOPT = 4 or 5. Also used with ISTRAT = 1-9 to a slightly
lessor degree. Constraint tolorance defining when nonlinear inequality
constriants are violated. CTMIN is a positive number. A constraint is
considered inactive if its value is more negative than CT and active if
its value is between CT and CTMIN. If the constraint value is more
positive than CTMIN, it is considered violated. This is perhaps the
second most important parameter for nonlinear constrained optimization.

Since, mathematically, an inequality constriant if violated any time its
value is greater than zero, there may be a temptation to set CTMIN = O.
However, this should not be done because the optimization algorithms
interpolate on zero and some numerical bandwidth should be provided to
allow for numerical inaccuracies. The default value allows for about a
half of a percent constriant violation for normalized constraints.

The geometric relationship between a constraint, G, and the parameters CT
and CTMIN is shown in the following figure.
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v

G.(X) =9
TTIMIN - These parameters have the same definition as CT and CTMIN, but for
srvictly linear c¢onstraints. Because numerical interpolation 1is more
~recise for linear constraints, these values are smaller in magnitude than
CT and CTMIN. CTL is reduced during the optimization process to a
magnitude approaching CTLMIN, but opposite in sign.
Caution: Do not define a constraint as linear unless you are absolutely

sure it is. If a linear constraint is treated as nonlinear, efficiency is
only slightly reduced, but if a nonlinear constraint is treated as linear,
the result may be non-convergence.

P - Used in IONED = 1 and 5. Convergence criteria in the Golden Section
method for the one-dimensional search. If IONED = 2 or 6, a larger value
is used (by a factor of 100), since the Golden Section search will be
followed by a cubic polynomial interpolation using the final four points.

If it is desired to find a very precise solution to the one-dimensional
search, DABALP can be reduced. Alternatively, a larger value will give a
less precise answer. It is normally not desired to change DABALP. The
default value gives high precision on the assumption that function values
are cheap, or else the Golden Section method would not be used.

DABOBJ - Used in all TIOPT options. Absolute convergence criteria for
optimization. If the objective function is changed by less than this
value for ITRMOP iterations, the optimization will terminate. If the

objective function changes by more than one order of magnitude during
oprimization, the default value for DABOBJ will probably cause premature
convergence. In this case, it is usually desirable to set DABOBJ to a
small number, say 0.001, and let the optimization process converge based
on the relative change criteria defined by DELOBJ.

DABOBM - Used with all strategies. This is the value of DABOBJ used during the

optimization sub-problem and is larger than DABOBJ. The reason for this
relaxed convergence criteria is that the optimizer will be called
repeatedly by the strategy. Therefore, the solution of the sub-problem
during the early stages is not as critical as if a strategy is not used.
The rules for changing DABOBJ apply here also.
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DABSTR - Used with all strategies. This is the overall absolute convergence

criteria. If the objective function is changed by less than this value for
ITRMST iterations by the strategy, the optimization will terminate. This=
has the same general meaning as DABOBJ and the same rules apply.

DELALP, DELOBJ, DELOBM, DELSTR - These parameters are used vwhere thei:

counterparts DABxxx are used above. However, here the convergence is
tested on the relative change in the objective function. The combination
DABxxx and DELxxx work together to form the diminishing refturns
convergence criteria in ADS. Here by relative change we mean the
fractional <change in the value of the objective function betwveen
successive iterations.

It the objective function is quite small in magnitude, a relative change.
of say one percent, may not be meaningful and so the absolute criteria are
relied on to detect convergence. On the other hand, for large values of
the objective function, the absolute change is considered of lessor
importance and the relative criteria tend to control the optimization
convergence.

DLOBJ1 - Used in all one-dimensional searches. On the first search, it is

difficult to estimate a desirable move parameter, ALPHA, because the
optimization process has no history. DLOBJ1l is used to estimate the ALPHA
which will reduce the objective function by this fraction, based on a
linear approximation to the problem. Thus, for DLOBJl = 0.1, the first
step in the one-dimensional search will attempt to reduce the objective by
ten percent.

If the problem is highly nonlinear, so that the calculated ALPHA is
consistantly less than the proposed ALPHA, efficiency will be improved by
reducing DLOBJI1. Alternatively, if the calculated ALPHA is consista.tly
greater than the proposed ALPHA, it is desirable to increase DLOBJ!.

DLOBJ2 - Used in all one-dimensional searches. If the objective function is

DX1,

quite large in magnitude, a move to reduce the objective by the fra-tion
DLOBJ1 may be too large. In this case, DLOBJ2 is used to limit the change
in the objective function to the magnitude of DLOBJ2. In other wourds.
DLOBJ1 is a fractional change and DLOBJ2 is an absolute change. As with
DLOBJ1, if the proposed moves are too large, DLOBJ2 may be reduced and if
they are too small, DLOBJZ may be increased.

Both DLOBJ1 and DLOBJ2 are updated during the optimization process by
keeping track of progress. Therefore, their initial values are usually
not too critical except for highly nonlinear problems where no progress
can be made due to very large estimates for ALPHA.

DX2 - Used in all one-dimensional searches. These parameters have an
equivilant meaning to DLOBJ1 and DLOBJ2, but here are applied to each
component of the X vector. The same general rules apply. The purpose of
DX1 and DX2 is to prevent very large initial changes in the components of
the X vector. DX1 and DX2 are also updated during the optimization
process.
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z : = 2, 3 and 4. Initial transiti~n point from interior to
enarior v function. EPSPEN is a small negative number, and is
optimization. If significant constraint violationsc are

i itial stages, this should be made more negative. The
at, if the design is feasible, a penalty is imposed for
WOLflonaT to one over the constriint value as the
the feasible boundary (G approaches zere from the

When a G = EPSPEN, the form of the constriant penalty
DeioTo tincar (ISTRAT = 2), quadratic (ISTRAT = 3) or cubic (ISTFA
RO the constraint.

I

) w and 8. The maximum polvnomial extrapolatinn illoved.
ensional search routines do net require that bhounds Jirvse

ne minimum of the function, put insntead extrapolate far tne
S Yacause extvapolation is relatively unreliable, EXTEAP ised
S limie o it of extrapolation. If the okweﬁt‘”‘ and
2ot voguadratic, extrapolation is usunlly reliab
ooinoroasad 2L the obiecrtive andsor zonstriants N .
Lindan, 1 i DaP should he reduced I7 o thig
R - 7 oinstead
: internal gradient <alcalatlons Ly
£ forvard finite difference unlessz a

case, a first backwards finite
is made to insure that the resulting

: tn Lowe 0 FDCH is the finite difference
fraction of the design wvariable being perturbed. If nig

i
)
'
N
» b
4
( ’

s
and required 1in evaluating the objective ol nt

, -nis should be reduced. If the analysis is iterative, with its
tnternal convergence parameters, FDCH may have to be increase-. For

iterative analysis, a value of FDCH up to 0.05 may be appropriate four
constralned preoblems, but FDCH = 0.02 is a more reasonable lim:t for

constrained problems. The reason for this is that ADS seeks the point
vhere the gradient is zero for unconstrained problems, and if FDCH is
targe, this is numerically difficult and will lead to false gradient
information. On the other hand, for constrained problems, the gradients
of rhe objective and critical constraints are usually non-zero at the
cprimun and so precision in their calculation is not as important.

- Used 1P IGRAD = O for internal gradient calculations by ADS. This is
"o minimum ahsolute steplength for gradient calculations. This is used

s corponent of X is near zero since a fractional change may not be
iningful.  The same general rules apply as with FDCH.

ML Jsed with ISTRAT = 8. Initial penalty parameter. If the design stays
w11 inside the feasible region, this can be reduced. If the design moves
wnll outside the feasible region, this should be increased.

PMLT - Penalty multiplier for equality constriants. ADS treats equality

~nstraints by adding a linear multiplier times the constriant values to
rhe objective and then treating the constraint as an inequality. If the
equality constriants are not sufficiently close to zero at the optimum,
increase PMLT. If convergence is very slow because the optimization is
trying to follov this constriant too closely, decrease PMLT.
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PSIAZ - Used with ISTRAT = 8. Used to avoid constraint violations. This has
little effect because of algorithmic modifications made to ADS and the
fact that the aADS optimizers can deal well with constriant violations.

RMULT - Used with ISTRAT = 1 and ISTRAT = 2-5 for equality constraints.
Penalty factor multiplier for the exterior penalty function method. If
the strategy iterations progress slowly from far outside the feasible
region, RMULT should be increased. If the design seems to become near
feasible quickly, but then converge poorly, RMULT should be decreased.
RMULT should never be less than about 1.1.

BMVLMZ - Used with strategies 6 through 9. TInitial relative move limits. If
the design variables alternately go from + to - the move limits, this
should be reduced. If the design variables repeatedly hit one side (upper
or lower limit), this should be increased. Also increase RMVLMZ is the
problem is known to be nearly linear or if the optimum is always fullvy
constrained (has as many active constriants as there are design
variables).

RP - Used with ISTRAT = 1 and 5 and for ISTRAT = 2, 3 and &4 for equality
constraints. Initial penalty parameter for the exterior penalty function
method and the Augmented Lagrange Multiplier Method and for equality
constraints for exterior and extended interior penalty function methods..
If the optimum of the first unconstrained sub-problem is wll outside the
feasible region, increase RP. If the optimum of the first unconstrained
sup-problem is feasible or very near feasible for ISTRAT = 1, reduce RP.

RPMAX - Used with ISTRAT = 1 and 5 and for ISTRAT = 2, 3 and 4 for equality
constraints. Maximum value of RP to be used. If optimum is significantly
outside the feasible region, increase RPMAX. 1If constraints are satisfied
much more precisely at the optimum than required, reduce RPMAX.

RPMULT - Used with ISTRAT = 2, 3 and 4. Multiplier on RPPRIM for consecutive
iterations. Increase if convergence is very slow but reliable. Decrease
if convergence is far from (expected) optimum.

RPPMIN - Used with ISTRAT = 2, 3 and 4. Minimum value of RPPRIM to be used. 1If
optimum is well inside the feasible region, reduce. If constraints are

more precisely satisfied than required, increase.

RPPRIM - Used with ISTRAT = 2, 3 and 4. Initial penalty parameter for extended

penalty function methods. If the result of the first unconstrained
sub-problem is well inside the feasible region, reduce. If the result is
right at the constraint boundaries, increase. RPPRIM is reduced on each

iteration by a factor RPMULT.

STOL - Used by all optimizers. Tolorance on the components of the search
direction to indicate convergence by the Kuhn Tucker conditions. The
Kuhn-Tucker conditions are the mathematical conditions that are satisfied
at a precise optimum. These cannot generally be used as the only
convergence criteria since this is numerically difficult to achieve.
However, when the Kuhn-Tucker ronditions are met, it is used as a
convergence criterion which supercedes all others. Reduciag STOL imposes
a more stringent convergence criterion.
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FE .- .

THETAT 4 5. MNovmally should not be changed 1if ICPT = 3.
"push-n{t” factor for the method of feasible
triants v increase THETAZ., If
sinear, There s an interaction
Twean The 2onsiriant o tolorans e HETAZ2.  IE rconstralnts are nighly
aonlinear, it is usually preferable to increase the magnitude of CT (make
T more negative)
ZR0 - Numerical "zero" to indicate reasonable machine accuracy. Primarily

sed internally by 4&DS to prevent floating point divide or indicate that
merical zero of a function has been found. Normally should not be

INTEGER PARAMETERS CONTAINED IN IWVK

N

ICNDIR - Used oy all optimizers. Conjugate direction or variable meiric restart
sarameter to restart with a steepest descent direction ! ' ; i
currently unconstrained (no constrains are active

default is usually adequate. If no progress is bein
autematically over-ride ICNDIR and restart with
4

lirection.

I is a worthwhile exercise to solve an unconstrained pr-oiler with ICNDIR
= 1. This will use a steepest descent direction on every 1tel n. This
©5 the classical steepest descent method and a comparigor of this with the
-tiher uncenstrained minimization methods in ADS will indicate the pover of

' <ho

urns automatic scaling on/off. If the problem has been carefully
d, set ISCAL = 0. Also, in general, if the optimization progress is
ow, it is worthwhile to try ISCAL = 0 to see if the automatic scaling in
S is actually causing some ill-conditioning. The present scaling

S

cause difficulty.
ITMAX - Maximum number of iterations in the optimizer. If function evaluations
are extremely expensive, reduce ITMAX. In the extreme case ITMAX = 1 or 2
5 Justified because the first few iterations are where most progress is
made., If function evaluations are not expensive and the optimization
~=rminates by reaching ITMAX, it should be increased. Vhen using a
strategy, ITMAX should be at least 10 to insure reasonable solution of the
cub-preblenm. When using ISTRAT = 6, 7 or 9, ITMAX should not be reduced
because the optimizer is only solving a simple and inexpensive approximate
~ub-problem. In these cases, the optimizer does not call for detailed
“mmnotion evaluations.
“"oed ny oall optimizers. The number of consecutive iterations that must
&y rhe absolute or relative convergence criteria before optimization
: wrminated.  Usually ITRMOP should be at least 2 because 1t 15 common
*a rmawke Little progress on one iteration, only to make major progress on
e next. Therefore, ITRMOP =.2 will allow a second try before
arminating.
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ITRMST - Used by all strategies. The number of consecutive sub-optimizations

JONED

JTMAX

that must satisfy the absolute or relative strategy convergence criteria

before optimization is terminated. The same rules apply as to ITRMOP,
except ITRMST = 1 may be used. This is because, the sub-problem cannot
make progress, and therefore solving an additional sub-optimization

problem will probably not help.

- Used with ISTRAT = 8. This strategy performs an additional
one-dimensional search. Normally the one-dimensional search defined by
IONED is used. If a different one is desired, it is defined by JONED.
Sometimes efficiency or reliability can be improved by using IONED = 5 cor
6 and JONED = 7. This is because the optimization sub-problem does not
call for detailed function evaluations and so can use a less efficient,
but more precise one-dimensional search.

- Maximum number of strategy iterations to be allowed. Reduce 1if
optimization is very expensive. Increase if optimization is stopped by
reaching the maximum number of strategy iterations and function
evaluations are cheap.
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